

AQA Computer Science A Level 4.6.4 Logic gates Flashcards

This work by PMT Education is licensed under CC BY-NC-ND 4.0

What name is given to a collection of connected logic gates?

What name is given to a collection of connected logic gates?

Logic circuit

How many outputs to logic gates have?

How many outputs to logic gates have?

What are the two inputs of an edge-triggered D-type flip-flop?

What are the two inputs of an edge-triggered D-type flip-flop?

1. Data

2. Clock signal

Which logic gate is represented by this symbol?

Which logic gate is represented by this symbol? $= \bigcirc$

NAND

Which logic gate does this truth table represent?

Α	В	Q
0	0	0
0	1	1
1	0	1
1	1	1

Which logic gate does this truth table represent?

 $OR \supset$

А	В	Q
0	0	0
0	1	1
1	0	1
1	1	1

What mathematical operation does AND perform?

What mathematical operation does AND perform?

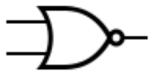
Multiplication

Which logic gate is represented by this symbol?

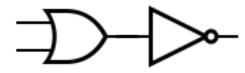
Which logic gate is represented by this symbol? $\exists D$ -

What mathematical operation does OR perform?

What mathematical operation does AND perform?


Addition

Which two logic gates can be combined to form this logic gate?



Which two logic gates can be combined to form this logic gate? \Rightarrow

NOT and OR

Which logic gate only outputs FALSE when both inputs are FALSE?

Which logic gate only outputs FALSE when both inputs are FALSE?

OR

Which logic gate is represented by the symbol \oplus ?

Which logic gate is represented by the symbol \oplus ?

XOR

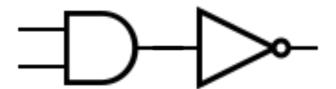
What type of logic circuit can be used to store the value of a single bit?

What type of logic circuit can be used to store the value of a single bit?

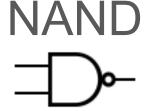
Edge-triggered D-type flip-flop

Which logic gate outputs TRUE when strictly one input is TRUE?

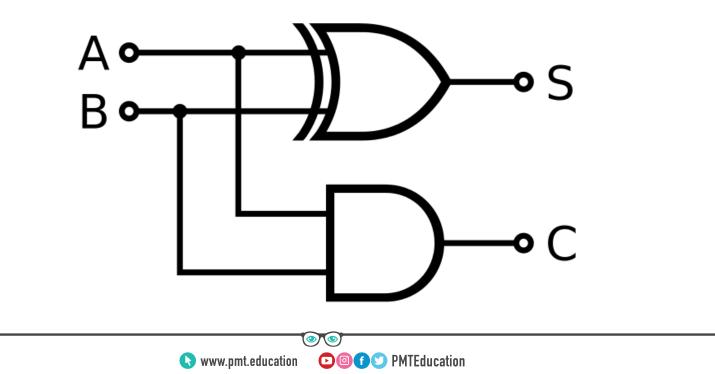
Which logic gate outputs TRUE when strictly one input is TRUE?


XOR

Which logic gate is the equivalent of this logic circuit?



Which logic gate is the equivalent of this logic circuit? $= \bigcirc - \bigcirc -$


Draw the logic circuit for a half adder

Draw the logic circuit for a half adder

Which logic gate does this logical expression represent?

$$\mathbf{Q} = \overline{A \times B}$$

Which logic gate does this logical expression represent? $Q = \overline{A \times B}$

NAND

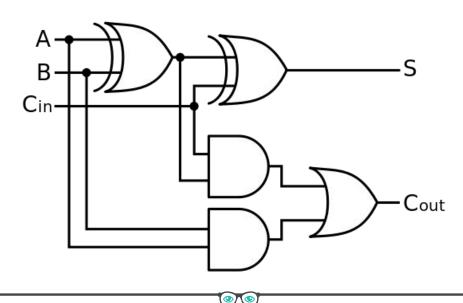
Which two logic gates are used in a half adder?

Which two logic gates are used in a half adder?

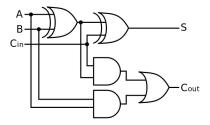
XOR and AND ⇒D− =D−

When is the value stored by an edge-triggered D-type flip-flop set?

When is the value stored by an edge-triggered D-type flip-flop set?


When the clock signal changes

Which logic gate is represented by this logic circuit?



www.pmt.education

Which logic gate is represented by this logic circuit?

Full adder

